

Multi-Pollutant Catalyst for Combustion Turbine Power Plants

Christopher J. Bertole, Ph.D.* Brian Helner Cormetech, Inc.

François Gressier ENGIE North America, Inc.

Neal Coffey * Ennis Power Company, LLC

* presenting authors

Presentation Overview

- Multi-Pollutant Catalyst (METEOR™ MPC)
 - > Background
 - > Full-Scale Installation

Page 2 December 2016 POWER-GEN International 2016

Multi-Pollutant Catalyst (METEOR™ MPC)

Page 3 December 2016 POWER-GEN International 2016

BACKGROUND Traditional HRSG Layout

→ CO Oxidation Catalyst → AIG → SCR Catalyst

Page 4 December 2016 POWER-GEN International 2016

BACKGROUND Catalyst Overview METEOR™ MPC

- Homogeneously extruded honeycomb catalyst (1 layer)
- SCR functionality → V₂O₅-WO₃/TiO₂
- Oxidation functionality → PGM (Pd and/or Pt)
- Initially developed and patented by Siemens Energy (US 7,390,471)
- Optimized and fully developed into commercial production by Cormetech

Compounds Removed

Installed in the place of traditional SCR

Page 5 December 2016 POWER-GEN International 2016

BACKGROUND Single Layer HRSG Layout → AIG → METEOR™ MPC

···METE ⊇R™

Oxidizing Function:

CO oxidation to CO₂ VOC oxidation to CO₂ and H₂O

Reduction Function:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

 $2NO + 2NO_2 + 4NH_3 \rightarrow 4N_2 + 6H_2O$
 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

Page 6 December 2016 POWER-GEN International 2016

BACKGROUND <u>Example Lab-Reactor Data</u> METEOR™ MPC

- DeNOx and CO oxidation → high conversion rates over wide temperature range.
- Active for VOC oxidation → rate depends on hydrocarbon speciation.
- PGM loading can be adjusted to optimize performance at low/high temperature.
- Applications: CCGT, SCGT, diesel/gas RE, refinery process units

Page 7 December 2016 POWER-GEN International 2016

BACKGROUND <u>Example Lab-Reactor Data</u> METEOR™ MPC

- Similar SO₂ oxidation rate as traditional SCR catalyst.
- Short-term exposure to 50 ppm SO₂ has no significant impact on CO oxidation.

Page 8 December 2016 POWER-GEN International 2016

BACKGROUND <u>Summary of Benefits</u> METEOR™ MPC

- Simplicity: one catalyst layer vs. two.
 - Smaller footprint in HRSG.
 - Lower pressure drop.
 - Lower capital and O&M costs.
- Flexibility: applicable to new units, retrofits, and replacements.
- Lower SO₂ oxidation rate, relative to the traditional two catalyst layout.
 - Potential for reduced backend fouling.
- Highly resistant to sulfur compounds in the flue gas.
 - Broader load flexibility from reduced sensitivity to sulfur fouling agents when operating at low temperature.

Page 9 December 2016 POWER-GEN International 2016

BACKGROUND Financial Benefit of Reduced Pressure Drop METEOR™ MPC

• Example:

➤ Reduced DP by 2" H₂O

Full load:

Increased power sold.

Intermediate load:

Lowered gas consumption.

Lower DP achieves tangible financial benefits.

Couring due to your greening loss @ Full Load							
Saving due to new pressure loss @ Full Load	240						
GT gross MW generated	240						
Pressure drop reduction (inch H2O)	2						
Natural Gas price \$/MMBtu	3						
Catalyst guarantee (year)	5						
Operating hours per year	4380						
Annual gross power output MW	1051200						
Price of electricity sold \$/MWh	30						
Power output correction with correction curves for pressure drop	1.002						
Total revenue for electricity sold	\$157,680,000						
Total revenue for electricity sold with new pressure drop	\$157,995,360						
Increase revenue from power sold over 5 years	\$315,360						
Annual revenue increase from power sold/unit/year	\$63,072						
Saving due to new pressure loss @ Intermediate Load							
GT gross MW generated	200						
GT Gross Heat Rate Btu/kWh (HHV)	11500						
Pressure drop reduction (inch H2O)	2						
Natural Gas price \$/MMbtu	3						
Catalyst guarantee (year)	5						
Operating hours per year	3066						
Heat rate correction with correction curves for pressure drop	0.9985						
Total gas consumption	\$105,777,000						
Total gas consumption corrected with new pressure drop	\$105,618,335						
Gas consumption saving from improved heat rate over 5 years	\$158,666						
Annual gas consumption saving/ unit/ year	\$31,733						
Total net benefit over 5 years	\$474,026						
Annual net benefit/unit/year	\$94,805						

Page 10 December 2016 POWER-GEN International 2016

Module Options METEOR™ MPC

1 Traditional Horizontal Flow "Standard Module"

Patented "Advanced Module" for Gas-Fired SCR Units

3 Canister:

ULFA:

Patent Pending "EliteTM" Ultra-High Surface Area Module for Deeper Reduction in Pressure Drop for Gas-Fired SCR Units

METEOR™ MPC + ELITE ™ Module = Optimal Low DP

Page 11 December 2016 POWER-GEN International 2016

Multi-Pollutant Catalyst (METEOR™ MPC)

Page 12 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC

- Ennis Power Company, LLC (Ennis, Texas).
- Siemens 501G unit combustion turbine (340MW combined cycle mode).
- METEOR™ MPC / ELITE™ replaced existing SCR catalyst in November 2015.
- Guaranteed emission reductions of NOx, NH₃ slip, CO and VOC.
- Successfully operating. Currently at >5,000 hours run time.

Page 13 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Motivation

Replacement of existing SCR layer with a METEOR™ MPC catalyst layer enabled:

- (1) Capability to operate at lower loads while maintaining CO emission compliance.
- (2) Faster compliance of CO emissions during unit startup.

Page 14 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Field Test Data (April 2016)

- Field testing validation: measured SCR inlet and outlet gas composition
 - ➤ SCR inlet = GT exhaust gas.
 - > Fresh catalyst achieved ~99% CO oxidation at 36% GT load point.
 - ➤ DeNOx achieving target value. NH₃ slip is very low due to the fresh catalyst state.

		GT Exhaust Gas C	Composition	SCR Outlet Gas Composition		Meteor SCR Catalyst Performance		
GT Load	SCR Temperature (°C)	GT Exhaust CO (ppm)	GT Exhaust NOx (ppm)	SCR Outlet CO (ppm)	SCR Outlet NOx (ppm)	SCR CO Oxidation	SCR DeNOx	SCR Outlet NH ₃ Slip (ppm)
98%	342	0.5	29.4	0.0	7.8	100%	74%	0.7
76%	334	0.6	32.8	0.0	6.7	100%	80%	0.7
36%	322	172	44.0	2.2	6.7	98.8%	85%	0.5

Page 15 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

CO emissions reduced after METEOR™ MPC installed.

Page 16 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

CO emissions vs. GT load: impact of METEOR™ MPC installation.

Page 17 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

METEOR™ MPC installation increased the unit's turndown capability.

Page 18 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

Same NOx emissions (per design).

Page 19 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

Lower NH₃ slip emissions (fresh catalyst).

POWER-GEN International 2016 Page 20 December 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

No change in NH₃ usage rate after METEOR™ MPC installation.

Page 21 December 2016 POWER-GEN International 2016

engie

FULL-SCALE INSTALLATION Ennis Power Company, LLC Plant Operating Data

~2 inch H₂O reduction in system backpressure (compared at constant flow)

Page 22 December 2016 POWER-GEN International 2016

FULL-SCALE INSTALLATION Ennis Power Company, LLC Catalyst Audit

Inspected catalyst on October 25, 2016:

The catalyst was in excellent condition, and the cells were clean and open.
These observations are consistent with the measured back pressure trends.

Page 23 December 2016 POWER-GEN International 2016

- Simultaneously reduces NOx, CO, VOCs and NH₃ slip to compliance levels in one catalyst layer located at the traditional SCR catalyst location.
 - > Lower system pressure drop.
- Provides benefits:
 - > Total emissions regulation compliance.
 - > Extended operating flexibility by extending the unit load operating range.
 - > Reduction of corrosion of the HRSG section downstream of the SCR.
 - > Lower O&M costs.
- Applicable to new units, retrofits, and replacements.
- Successfully operating at Ennis Power Company, LLC.

Page 24 December 2016 POWER-GEN International 2016

POWER GENERATION WEEK 2016

Thank you for your attention!

See us at our PowerGen booth, send us an e-mail, or give us a call!

- √ Cormetech, Inc.
 - PowerGen booth # 3322
 - Contacts =
 - Chris Bertole, <u>BertoleCJ@Cormetech.com</u>, 919-620-3524
 - Brian Helner, <u>HelnerBM@Cormetech.com</u>, 919-595-8719
- ✓ ENGIE North America, Inc.
 - Contact =
 - Neal Coffey, Neal.Coffey@na.engie.com, 972-875-2993 X222

